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This paper focuses on trajectory planning for spacecraft swarms in cluttered environ-
ments, like debris fields or the asteroid belt. Our objective is to reconfigure the spacecraft
swarm to a desired formation in a distributed manner while minimizing fuel and avoid-
ing collisions among themselves and with the obstacles. In our prior work we proposed
a novel distributed guidance algorithm for spacecraft swarms in static environments.1 In
this paper, we present the Multi-Agent Moving-Obstacles Spherical Expansion and Se-
quential Convex Programming (MAMO SE–SCP) algorithm that extends our prior work
to include spatiotemporal constraints such as time-varying, moving obstacles and desired
time-varying terminal positions. In the MAMO SE–SCP algorithm, each agent uses a
spherical-expansion-based sampling algorithm to cooperatively explore the time-varying
environment, a distributed assignment algorithm to agree on the terminal position for
each agent, and a sequential-convex-programming-based optimization step to compute the
locally-optimal trajectories from the current location to the assigned time-varying terminal
position while avoiding collision with other agent and the moving obstacles. Simulations
results demonstrate that the proposed distributed algorithm can be used by a spacecraft
swarm to achieve a time-varying, desired formation around an object of interest in a dy-
namic environment with many moving and tumbling obstacles.

I. Introduction

Trajectory planning for multi-spacecraft formations and swarms, composed of hundreds to thousands of
spacecraft, has been a major area of research over the past decade.2–7 Although there have been significant
advances in the development of swarm guidance algorithms for cooperative spacecraft, they cannot be di-
rectly applied to handle static and time-varying uncooperative obstacles. In this paper, we present a novel
guidance algorithm for spacecraft swarms in an active environment cluttered with many time-varying, moving
obstacles, like a debris field or the asteroid belt, and desired time-varying terminal positions. The objective
of this algorithm is to reconfigure the swarm to a desired time-varying formation in a distributed manner
while minimizing fuel and satisfying spatiotemporal constraints like avoiding collisions among themselves
and with the obstacles.

In our prior work, we introduced the Multi-Agent Spherical Expansion and Sequential Convex Program-
ming (Multi-Agent SE–SCP) algorithm for distributed trajectory planning for spacecraft swarms in static
environments.1 In the first step of the Multi-Agent SE–SCP algorithm, the agents use a spherical-expansion-
based sampling algorithm to cooperatively explore the workspace and map the asteroid in a collaborative
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manner. During the spherical expansion step, each agent stores the position of randomly generated nodes
in the free space (the space that is free from obstacles) and the radius of the largest sphere that does not
intersect with any obstacle. The agents exchange the positions of the nodes and their radii with their neigh-
boring agents to generate a global view of the workspace while each agent has only explored a much smaller
region. This step terminates when all the target positions are strongly connected in the global network of
nodes.

Using a distributed auction algorithm4 the agents converge on an optimal assignment of the target
locations in the static desired formation. The agents use their global network of nodes to approximately
determine their distance to each of the target locations. During the second step of the Multi-Agent SE–
SCP algorithm, each agent generates a locally fuel-optimal trajectory from its current location to its target
position using a sequence of convex optimization problems. As the agent moves along this trajectory, it
detects the position and velocity of neighboring agents within its vicinity, and uses model predictive control
to update its trajectory to avoid colliding with these agents. Thus the swarm achieves the desired formation
in a distributed manner while avoiding collisions.

In this paper, we extend the Multi-Agent SE–SCP algorithm for spatiotemporal motion planning of
spacecraft swarms in a distributed manner. The objective of the spacecraft swarm is to achieve a desired
time-varying formation around a tumbling asteroid, while avoiding collisions among themselves and with the
multiple moving obstacles in the active, dynamic environment. The main challenges that arise due to these
spatiotemporal constraints, which cannot be addressed by the Multi-Agent SE–SCP algorithm, are:

• The spacecraft swarm need to explore the entire workspace in a cooperative manner because it might
be impossible or highly inefficient to explore the entire workspace alone, especially due to its dynamic
time-varying nature. Moreover, the spacecraft need to actively keep track of the desired time-varying
terminal positions, whose motion is not known a-priori.

• While traveling to their assigned time-varying terminal position, each spacecraft needs to avoid colli-
sions with other spacecraft and the multiple moving obstacles. Moreover, we assume that maximum
distance that the terminal position can shift in a time step is less than the maximum distance that the
spacecraft can travel in a time step.

In this paper, we address these challenges using the Multi-Agent Moving-Obstacles Spherical Expansion and
Sequential Convex Programming (MAMO SE–SCP) algorithm. Our proposed algorithm is computation-
ally efficient, therefore it can be implemented onboard resource-constrained spacecraft. Simulations results
demonstrate the effectiveness of the proposed distributed algorithm for guidance of spacecraft swarms.

II. Problem Statement

Let X ⊂ R3 represent the 3D workspace in Local-Vertical-Local-Horizontal (LVLH) frame, as shown in
Fig. 1. The workspace X contains all the initial and terminal positions, moving obstacles, and represents
the volume deemed sufficient to find a path for all agents. Let Xobs,k ⊂ X represent the time-varying and
stationary obstacles in this workspace at the kth time step. Note that the time index is denoted by the
subscript. The region where the swarm can maneuver freely is given by Xfree,k = X/Xobs,k.

Let N agents belong to this swarm. The initial positions of these N agents are given by Xi
init ∈ X for all

i ∈ {1, . . . , N}, which are assumed to be stationary. Note that the agent index is denoted by the superscript.
Similarly, the N time-varying terminal positions are given by Xj

goal,k ∈ X for all j ∈ {1, . . . , N}. The actual
assignment of the agents to terminal positions will be performed later because the cost-to-go for each agent
cannot be calculated beforehand on account of the obstacles. We assume that Xobs,k ⊂ X and Xj

goal,k ∈ X
for all j ∈ {1, . . . , N} are known to each agent at each time step.

To avoid inter-agent collisions, each agent must maintain at least rcol distance with every other agent in
the swarm. Moreover, let rmax represent the maximum distance that any agent can travel in any time step.
We assume that rmax is larger than the maximum distance that any moving obstacle or the time-varying
terminal positions can travel in any time step. Moreover, we assume that the initial and final positions
satisfy this collision avoidance constraints, i.e.,∥∥Xi

init −X`
init

∥∥
2
≥ 2 (rcol + rmax) , ∀i, ` ∈ {1, . . . , N}, i 6= ` (1)∥∥∥Xj

goal,k −X
`
goal,k

∥∥∥
2
≥ 2 (rcol + rmax) , ∀j, ` ∈ {1, . . . , N}, j 6= `, ∀k ∈ N (2)
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k = 1 k = 10 k = 20

k = 30 k = 40 k = 50

Figure 1: The 3D workspace X , the time-varying obstacles Xobs,k, the initial positions Xi
init,∀i ∈ {1, . . . , N}

(in blue), and the time-varying terminal positions Xj
goal,k,∀j ∈ {1, . . . , N} (in red) are shown for N = 6

agents and multiple time steps.

The objective of the Multi-Agent Moving-Obstacles Spherical Expansion and Sequential Convex Pro-
gramming (MAMO SE–SCP) algorithm is to ensure that all the N agents reach the N time-varying terminal
positions while avoiding collisions with the time-varying, moving obstacles and among themselves.

III. Multi-Agent Moving-Obstacles Spherical Expansion and Sequential
Convex Programming (MAMO SE–SCP) Algorithm

The MAMO SE–SCP algorithm’s pseudocode for one of the agents is presented in Algorithm 1. During
the Initialization step, the necessary data structures are created and initialized. Then the Spherical Expan-
sion step and the Sequential Convex Programming step are executed iteratively until the agent reaches its
terminal position.

Algorithm 1: Initialization step of the MAMO SE–SCP Algorithm for the ith agent at the k = 1
time step

1: riinit,k ← MinDistObs(Xi
init,Xobs,k)

2: Vik ← {Xi
init[r

i
init,k]}

3: E ik ← ∅, F ireached ← 0, F iconnected ← 0, Xi
term ← ∅

III.A. Initialization Step

The ith agent’s MAMO SE–SCP algorithm intends to generates a time-varying directed graph Gik = (Vik, E ik)
in the time-varying safe region Xfree,k. Each node in the set of nodes Vi stores the position of the node and the
minimum distance of that node from any obstacle (both in Xobs,k and other agents). For the node Xi

init, the
minimum distance riinit,k from the obstacle Xobs,k is obtained using the function MinDistObs(Xinit,Xobs,k),
which takes in the position of the node and the obstacles in the workspace and returns the radius of the
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largest sphere centered on that node which does not intersect with any obstacle. Then the set of nodes Vik
is initialized with the nodes Xi

init[r
i
init,k].

Each element in the set of edges E ik stores the edge’s starting and ending nodes and the cost of traversing
that edge. The set of edges E ik is initialized with the empty set. The flag F ireached, which denotes if the
ith agent has reached its terminal position, is set to zero. The flag F iconnected, which denotes the number
of terminal positions that the ith agent is connected to, is also set to zero. The assigned terminal position
Xi

term of the ith agent is set to an empty set.

III.B. Spherical Expansion Step

During this step, the workspace is explored using the sampling technique shown in lines 5–29 in Algorithm 1.
The objective of this step is to populate the graph Gik = (Vik, E ik) in order to find paths from Xi

init to Xj
goal,k

for all j ∈ {1, . . . , N}.
Algorithm 1: Spherical Expansion step of the MAMO SE–SCP Algorithm for the ith agent at
the kth time step

4: if
∑N
`=1 F

`
reached 6= N then

5: Y `k , X
`
new, F

`
connected, F

`
reached, ∀` ∈ {1, . . . , N} ← AllAgentCommunicate

6: X̂ iobs,k = Xobs,k

7: for ` = {1, . . . , N}/{i} do
8: X̂ iobs,k = X̂ iobs,k ∪ GenerateSphere(Y `k , rcol + rmax)

9: Vik ← Vik ∪ {X`
new[0]} ∪ {Xj

goal,k[0]}
10: end for
11: Vinew ← ∅
12: for all Xv[rv,k] ∈ Vik do

13: rv,k ← MinDistObs(Xv, X̂ iobs,k)

14: Vinew ← Vinew ∪ {Xv[rv,k]}
15: end for
16: Vik ← Vinew
17: Xrand ← GenerateSample

18: Xnearest ← NearestNode(Vi, Xrand)
19: Xi

new ← Steer(Xrand, Xnearest)
20: rinew,k ← MinDistObs(Xi

new, X̂ iobs,k)

21: Vik ← Vik ∪ {Xi
new[rinew,k]}

22: E ik ← ∅
23: for all Xv[rv,k], Xw[rw,k] ∈ Vik and Xv 6= Xw do
24: if ‖Xv −Xw‖2 ≤ rv,k + rw,k then
25: cv,w ← EdgeCost(Xv, Xw)
26: cw,v ← EdgeCost(Xw, Xv)

27: E ik ← E ik ∪ {
−−−−→
XvXw[cv,w]} ∪ {

−−−−→
XwXv[cw,v]}

28: end if
29: end for
30: end if

Let Y `k ∈ X for all ` ∈ {1, . . . , N} represent the current position of each agent at the kth time step. All
the agents exchange their position Y `k , their new nodes X`

new, and their flags F `connected and F `reached using the
function AllAgentCommunicate, which relies on inter-agent communication and a strongly-connected com-
munication network topology. During the first iteration, no new nodes are communicated. Communicating
only the new nodes, as opposed to complete trajectories or other features of the obstacles, allows the agents
to collaboratively explore the workspace in a computationally efficient manner under limited bandwidth
constraints.

The lines 6–10 create a new obstacle set X̂ iobs,k where the original obstacle set Xobs,k is augmented with

spheres of radius (rcol + rmax) centered on the position of all the other agents. Thus X ifree,k = X/X̂ iobs,k
represents the region where the ith agent can maneuver freely at the kth time step.

The new nodes from other agents X`
new,∀` ∈ {1, . . . , N} and the new terminal positions Xj

goal,k,∀j ∈
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{1, . . . , N} are also added to Vi during lines 6–10. The lines 11–16 are used to update the radius of the
nodes in Vi with the new obstacles set X̂ iobs,k. The process of adding a new node and regerating the edges

of the graph Gik = (Vik, E ik) is shown in lines 17–29. It is similar to that of the original Multi-Agent SE–SCP
algorithm,1 hence it is not explained here for brevity.

For the problem setup shown in Fig. 1, multiple iterations of only the Spherical Expansion step are shown
in Fig. 2. Note that each agent is able to generate a dense graph within 30 iterations because each agent
also uses the nodes generated by other agents.

III.C. Sequential Convex Programming Step

During this step in lines 32–60 in Algorithm 1, each agent first determines its terminal position and then
moves towards that terminal position by generating locally optimal trajectories. Since this step is similar to
that of the original Multi-Agent SE–SCP algorithm,1 we only highlight the differences here for brevity.

Algorithm 1: Sequential Convex Programming step of the MAMO SE–SCP Algorithm for the
ith agent at the kth time step

31: if
∑N
`=1 F

`
reached,k−1 6= N then

32: if Xi
term,k = ∅ then

33: if
∑N
`=1 F

`
connected = N2 then

34: Xi
term,k ← DistributedAssignment,

35: Vik ← Vik ∪ {Xi
term,k[0]}

36: else
37: F iconnected ← 0
38: for j = {1, . . . , N} do
39: P i,jk , cP i,jk

← MinPath(Gik = (Vik, E ik), Xi
init, X

j
goal,k)

40: if cP i,jk
<∞ then

41: F iconnected ← F iconnected + 1
42: end if
43: end for
44: end if
45: else
46: if Xi

term,k = Y ik then

47: F ireached ← 1, xi ← ∅
48: else
49: F ireached ← 0
50: P i, cP i ← MinPath(Gik = (Vik, E ik), Y ik , X

i
term,k)

51: (xi1,u
i
1, cxi1)← OptimalTraj(P i)

52: for τ = {1, . . . , NSCP } do
53: P iτ ← GeneratePath(xiτ )
54: (xiτ+1,u

i
τ+1, cxiτ+1

)← OptimalTraj(P iτ ,x
i
τ ,u

i
τ )

55: end for
56: xi ← xiNSCP+1

57: end if
58: end if
59: Y ik+1 ← AgentMotion(xi)
60: Vik ← Vik ∪ {Y ik+1[0]}
61: end if

If all the agents are connected to all the time-varying terminal positions, then the agent execute a dis-
tributed assignment algorithm, like linear programming,8 auction algorithm,9 and variable-target-number
distributed auction algorithm,4 to converge on a suitable assignment of terminal positions (line 34). Other-
wise the ith agent counts the number of terminal positions it is connected to in lines 37–43. The function
MinPath(Gik = (Vik, E ik), Xi

init, X
j
goal,k) takes in the current graph, the initial and goal positions, and returns

the minimum-cost path P i,jk along with the cost of that path cP i,jk
. The path P i,jk = {X1[r1,k], X2[r2,k], . . . ,

Xm[rm,k]} is a sequence of m nodes with corresponding radii, where X1 = Xi
init and Xm = Xj

goal,k. The cost
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Iteration 1 Iteration 4 Iteration 7 Iteration 10

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Figure 2: Multiple iterations of the Spherical Expansion step in the MAMO SE–SCP algorithm are shown.
All agents (in magenta) are located at their starting positions. Note that the desired time-varying terminal
positions matintain a constant relative attitude with respect to the tumbling asteroid.

of the path cP i,jk
is the sum of the edges along that path. Graph search algorithms like Dijkstra’s algorithm

can be used for this step.
If the terminal position Xi

term,k is assigned (line 45), then the path from the current position Y ik to the

terminal position Xi
term,k is found using multiple iterations of the function OptimalTraj. This optimization

step is similar to that of the original Multi-Agent SE–SCP algorithm.1 A few steps of the MAMO SE–
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Iteration 20 Iteration 30 Iteration 40 Iteration 50

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Figure 3: Multiple iterations of the entire MAMO SE–SCP algorithm are shown. All agents (in magenta) are
moving to their terminal positions. Note that the agents keep tracking their desired time-varying terminal
positions after reaching them.

SCP algorithm are show in Fig. 3. Note that each agent updates its optimal trajectory based on its current
location and the location of other agents while avoiding collisions with other agents and the moving obstacles.
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IV. Numerical Simulations

In this section, we use the MAMO SE–SCP algorithm to reconfigure a swarm of 48 agents into the desired
time-varying formation around a tumbling asteroid shown in Fig. 4. The terminal positions form a spherical
formation and maintain a constant attitude around the central tumbling asteroid. A number of moving,
tumbling obstacles are also present in this active environment.

k = 1 k = 10 k = 20

k = 30 k = 40 k = 50

Figure 4: The 3D workspace X , the moving obstacles Xobs,k, the initial positions Xi
init (in blue), and the time-

varying terminal positions Xj
goal,k (in red) are shown for N = 48 agents. Note that the desired time-varying

terminal positions matintain a constant relative attitude with respect to the central tumbling asteroid.

Multiple iterations of the MAMO SE–SCP algorithm for agents 12, 24, 36, and 48 are shown in Fig. 5
and 6. During the first 19 iterations of the Spherical Expansion step, each agent is able to generate a dense
graph of the time-varying workspace. During the remaining 30 iterations, each agent travels to its chosen
terminal position while avoiding collisions with other agents and the moving obstacles.

V. Conclusions

In this paper, we extend our prior work on motion planning of spacecraft swarm in static cluttered
environments1 to handle spatiotemporal constraints such as time-varying, moving obstacles and desired
time-varying terminal positions. The first step in the algorithm is a spherical-expansion-based sampling
algorithm to cooperatively explore the time-varying environment and map the moving obstacles in the envi-
ronment where the agents exchange the positions of the nodes and their radii with their neighboring agents
to generate a global view of the workspace while each agent has only explored a much smaller region. After
a distributed assignment step, the agent generates a locally fuel-optimal trajectory from its current location
to its time-varying target position using a sequence of convex optimization problems. As the agent moves
along this trajectory, it detects the position of other agents and moving obstacles, and updates its trajec-
tory to avoid collisions with other agents and the moving obstacles. Thus the swarm achieves the desired
time-varying formation in a distributed manner while avoiding collisions. The MAMO SE–SCP algorithm is
computationally efficient, therefore it can be implemented onboard resource-constrained spacecraft. Simula-
tions results demonstrate the effectiveness of the proposed distributed algorithm for guidance of spacecraft
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Agent 12 Agent 24 Agent 36 Agent 48

Iteration 1

Iteration 5

Iteration 10

Iteration 15

Iteration 19

Figure 5: Multiple iterations of the the Spherical Expansion step in the of the MAMO SE–SCP algorithm
are shown. All agents (in magenta) are located at their starting positions.

swarms in dynamic environments.
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